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ABSTRACT

This paper obtains some 1imit theorems for the
simple branching process allowing immigration {Xn} when
the offspring mean s infinite. It is shown that there |
exists a function U such that {e'"u(xn)} converges |
almost surely and if s = xbjlog’u(J) < », where {bj} is
the immigration distribution, the 1imit is non-defective
and non-degenerate but is infinite {f s = =,

When s = « 1imit theorems are found for {U(X )}

which involve a slowly varying non-l1inear norming.

Key words: Bienaymé-Galton-Watson branching process,

immigration, martingale convergence,

1imit theorems, regular variation.
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1. INTRODUCTION

Let (X :n=0,1,...} denote a Bienaymé-Galton-Watson process with
immigration, for which the offspring probability generating functfon,
f, satisfies m= f'(1-) = » and {In:n-l.z....}. the number of fomi-
grants into successive generations, are independent and identicaily
distributed with probability generating function b satisfying
b(0) < 1. Suppose also that Xo = 0.

This paper describes the behavior of xn as n¢e in terms of
appropriate limit theorems. In §2 we show that for a certain increzs-
ing function U constructed as in [6], the sequence {e'"u(xn)} con-
verges almost surely and that the 1imit is non-defective if a certain
condition on the immigration distribution obtains and is essentially
infinite otherwise. It {s pointed out that, in the former case,

{Xn} may be classified in terms of regularity and irregularity exactly
és in the case of no immigration [6]).
In 53 we consider the case where Y_ = e‘”u(xn) + e« 28,5, Llimit

n
theorems are obtained for Y which involve a non-1inear norming by

n
a slowly varying (SV) function. Theorem 2 involves no extra assump-
tions but has a rather strange appearance: neater versfons are given
in Corollaries 1-3 under conditions expressed in terms of

6(x) = 1 - b(exp[-1/V(e*)}), where V is the functional inverse of

U. These results are analogues of the families of 1imit theorems for
the case m < » which were presented in Part I [3]), and some examples
are given to show that the conditions in Corollaries 1-3 are not
vacuous. Finally, it is shown that there is no sequence (cn) of
norming constants such that Yn/c" has a 1imit in distribution which

is nefther defective nor degenerate at the origin.
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2.

To complete the survey in Part I, it suffices to menticn that a 1
version of Theorem 1 was first proved in [2] under conditions on f
ensuring that U could be chosen as a suitable power of Iog’ and only ’
convergence in law was established. The conditions of this result were
substantially relaxed in [1] to allow U to be SV at infinity and
strictly increasing. A restricted and more opaque version of Corol-

lary 1 was proved in [2].

2. ALMOST SURE CONVERGENCE
th

Let fn denote the n functional {iterate of f and h" the

functional inverse of -log f_(e"%). Let p.(s) = 1 b( xp(-h (53)}
n o m=1 .

and p(s) = lim pn(s) for 0<s<-logq where q = f(g)<1. Since

n>e
hn(s)oo (n+=w) 1t is clear that either p(s)>0 or = 0. In the
former case it is clear that {(exp(-hn(s)xn)llpn(s)} is a martingale
and the martingale convergence theorem shows that for each
0<s <-log q, exp(-hn(s)xn) 1;5. W(s), say, and E W(s) = p(s). The
behavior of {Xn} can be analyzed in precisely the same way in which
that of the corresponding process without immigration was analyzed in
{6). In particular the classification of points in (0,-log q) as
regular and irregular carries over to the present case and if
T = sup{s|0<s<-log q, W(s)< 1} it follows that T 1is non-defective
and P(T zsr) = p(sr). P(T =sr) = 0 for every regular point s_.
Finally, for the function U constructed in [6]), the arguments
used in this reference show that e'nU(Xn) e U(T'l). In the comp-
lementary case, when p(s) = 0, the martingale convergence theorem

shows that exp(-hn(s)x") 8.5- 0 for each 0<s<-log q. To proceed




3.

further we need the following details about U. It is shown in [6]
that by starting with a fixed soe(o.-log q) it is possible to con-
struct U so that it is continuous on [0,=), identically zero on 3
{0,1/(-10g q)}, positive and strictly increasing to infinity on
(1/(-10g q),=) and satisfies the relations

u(1/h (s4)) = e", u(1/n (s))7u(1/h (sg)) = U(1/s) (1)
(n=0,1,...) i

Choose a sequence {sm:m-l.z....} such that -log gq> sm;o (m+=).
Let e be a subset of the basic probability space such that

P(an) = 1 and hn(sm)xn(u)*o (n*ﬂtucﬂm). Thus on Q' = J:Hnm.

hn(sm)xn(u)+o for each m and this implies that eventually

xn(u) > llhn(sm) and hence, from (1), eventually
e "u(x (w)) 2 U(1/sy) (wen').
Letting n+» and them m+=, we obtain all except the final assertion

of the following theorem.

Theorem 1. If p(s)>0 then e "u(x ) %°3* U(1/T) where T is

defined above, and if p(s) = O, e'"u(xn) a;?' @, Furtheremore,
p(s) >0 iff .
- +
] j=1 bj log U(J) < = (2)

gﬁg;g_{bj] denotes the immigration distribution.
The last assertion follows from these observations. Since U
is strictly increasing, the relations (1) can be solved to obtain an
explicit expression
h(s) = 1/v{e"u(s™")) (3)

for hn' and the proof of Lemma 2 in [1] needs, with one exception,

[P
% A .




T —— T

T

T A ST

only trivial changes to show that (2) holds iff

n§1 b[exp(-l/V(e"U(s'l))]] >0

where V 1is the functional inverse of U, whence the assertion in
this case. The exception is that the proof given in [1] assumes that

log U is SV: that this is so follows from

Lemma 1. If L {s SV at infinity then so is L(U(-)}).

Proof. By virtue of the uniform convergence theorem for SV functions
[7) it suffices to show that for each A > 0, U(ax)/U(x) {s bounded
awvay from zero and infinity for all sufficiently large x. It sufficcs
to consider the case 1 s A < . The proof to be given parallels that
of Lemma 2.3.3 in [6]. Choose soc(O.-log q) as in Constructfion
2.3.1 of [6), and set D = [h(so).sol. The functions
gn(s) = hn+1(s)/hn(s) are continuous on D, and, from equations (2)
and (3) of [6]), it follows that

g,(s) 2 95,9(8) & g (s) » 0 as now : (4)
hence, by Dini's theorem, this convergence is uniform en D. Thus for
all n 2 ng» chosen large enough, and all seD, x/hn(s) < 1/hn+1(s).
For each sufficiently large x construct n and secD so that

x~1. hn(s) (see Construction 2.3.1, {5]). It follows that

1 <U(ax)/U(x) ¢ U(l/hn+1(s))/u(l/hn(s)) =e,

and the lemma now follows.

3. THE CASE p(s) = 0

The description of the behavior of x“ in the case p(s) = 0

is through distributional, rather than almost sure, limit theorems.




The first step in deriving them is to note that, from (3),
n -
E(exp(-hn(t)xn)] = p(t) = T exp[-l/v(e”u(t 1))} ] :
m-

Using integral test comparisons, as in [3]), it is not difficult
to show that

n
po(t) = & (t) exp [0 1og b[%xp(-l/V[eYu(t-l))]‘]dy |

where An(tn)"l if tn-0+ as n+=, Denoting the integral by Jn

and making the change of variable e* = eyU(t'l). it follows that if

t = tn*0+ then
n+log U(1/t,)

“Jd_~j = G(x)dx (5)
g 2 f109 u(1/ty)

wvhere G{x) = 1 -b(exp(-l/V(ex))]. We are now in a positicn to
approach the main 1imit theorem, by making a suitable choice of tn’

and by using the following version of Reuter's Lemma 1 in {1].

Lemma 2. Let U be constructed according te Construction 2.3.1 in

[6] and in addition suppose it is strictly increasing on (1/(-log q),=).

Let Yn be positive, increasing and satisfy the properties

(a) yn(u)/yn(v)-w (n+e) if u>v and O<c<u, v<dgw; an

(b) ey (u)+e (nse; c< u<d).

If, for a seguence of non-negative random variables {W 1 there is 2

cortinuous functicn a{-) such that

E[}xp(-wn/V(e"yn(u))]]+ a(u) (c cu <d; n+=)

Ple”u(u,) s y (u)) + alu).




6.

Proof. Let A = (e‘"u(wn) s ¥ (u)) = (W < V(e"yn(u))}. Choose
ue(c,d) and c <u; <u<u, <d. If Yéi)ﬂ eXP[-Hn/V(enyn(ui))] (i=1,2).

then arguing as in [1] we obtain

3 | EYﬁl) - exp(-xgl)) s P(A)) < (EY‘Z)) exp xgz)
where Agi) = V(e"yn(u))/V(e"yn(ui)) (i=1,2). If we can show that

A£1)+~ and Aéz)* 0, the assertion follows upon then letting ug >u.
We shall prove only that A£1)+~. It follows from (a) that for
f - each t»>1
1 n n
xé ) > V(te yn(ul))/V(e yn(ul))

for 211 sufficiently large n. Let m(n) be the integer part of

. n + log yn(ul). By (b) m(n)+= (n+=) and e"(“) < e"yn(ul) <e

and hence, taking ¢t = ez. 3

m(n)+1

T

_\,,..

| a{02 Vexptn(n)+21) /¥ [exp (n(n)+1) | shy oy (1/VCeD) 10y (17¥CeD). I

e

4 where we have used (3). Hence, from (4), 1lim xél) Sy

[log x M°
Now, for x > 1, let A(x) = exp G{y)dy, which is SV at
‘0

~—T— =y

infinfty and strictly increasing. Furthermore, the ratiio

1og x#+n

A(x)/a(xe") = exp {-I G(y)dy}

log x
ah
= exp (-{1 6(1og(zx))dz/z)
increases with x on (1,~) from m, o say, to unfty, and since
p(t) = 0 4ff ﬁ;G(x)dx = =, it follows that m +0 (n+=); moreover,
for each fixed x 2 1, A(x)/A(xe") decreases to zero as n+=. Hence,
for any O<u<l and all n sufficiently large, we may define

yn(u)> 0 wunfquely in such a way that
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Ay (u)) = ur(e"y, ()
where it follows that y is increasing on (0,1), that yn(u)+-
(n+=) and that if O0<v<uc<l,

yn(u) A (uA(e yn(u)l} uA(e y (v))]
yo(v) a7 (u(e y"(vﬂ [vn(e y,,(vn]

as n+=, since A s SV at infinity. Choosing U(tn ) = yn(u) in

(5) we see that §, =0 and hence E exp(-xnlv(e"yn(u))]:] + u (O<u<l),

and that the other conditions of Lemma 2 are satisfied. This cempletes

the proof of the following theorem.

Thereom 2. If p(s) = 0, then
" d
A(eMu(x ))/a(u(x,)) + W

where W is uniformly distributed on [0,1).

Analogues of Theorem 2 alsc obtain when m<1l 2and l<mc<e=;
see {3].

The proof of Theorem 2 has been carried out under the condition

x0 = 0. However

pin)(e) = E[}xp(-xnhn(t))lxo=£]
= [}n(éxp(-hn(t)j]iPé")(t)

e"tPé")(t).

and since t was chosen to converge to zero, we see that Theorem 2
is valid for any inftial state. Furthermore, Ale”"u(+))/a(u(:)) is
strictly increasing and continuous and hence the weakly convergent

sequence in Theorem 2 is a Markov chain and, in addition, s mixing

[5, Theorem 2). Thus [4) we cannot have convergence in probability




in Theorem 2.
The quantity converging in law in Theorem 2 has a rather cdd
appearance since U(xn) is present in both numerator and denominator.

Tidier versions can be obtained by making estimates of

1
Ale™Mu(x D) /a(u(x,)) = exp {-Y, fx n/Y 6(zV,) dz } w10
g n

under appropriate assumptions on the behavior of G. For brevity,

we write Y = log U(X ) throughout. %

0 and lim xG(x) = 0, then |

X

ale™"ulx,))/ale™) W

"

Corollary 1. If p(s)

where W is uniformly distributed on [0,1].

Proof. Since xG(x) - 0, we have

IY" G(y) dy = o {-109(1-n/Yn)} ; (7)

Yn-n

combining Theorem 2, (6) and (7), it fcllows that, as n+=,

n/Yn 2 1. Hence, as n+o

Y
A(U(x ))/a(e") = exp { L‘"G(y) dy }

d
= exp {0(109[Yn/n])} -1,

and the result follows.

Corollary 2. If p(s) = 0 and limx+nx6(x) = a, 0<ace, then

- d
n 1log u(xn) -1+W,

where PN < u] = (u/(1+u)}?.




Proof. Immediately, from (6), we have
a.s
N

A(e MU(X D) /AQU(X ) (L sy 3R,

and the result now follows from Theorem 2.

Corollary 3. If p(s) = 0, IimX*ﬁxG(x) = o ,and G 1is regularly
varying at infinity, then nG(log U(Xn)) S W, where W 1is a standard

necative exponential random variable.
Proof. Here, from (6), we have

A(e™"u(x ))/a(u(x )} = exp G(zY,) dz ;(8)

-Y“[l-n/vn

combining (8) with Theorem 2 and 1lim___xG(x) = =, it follows that,

X+
d
3s now, n/Yn + 0. Hence, since G varies regularly,
-n
ale”U(x D) /a(u(x )} ~ exp {-nG(Y )} ,

and the result follows.
If in Corollary 3 G has a positive index a4, then 0 < A <1

and the conclusion can be transformed to the form

“1 d (2]
a, log U(Xn) + Y
where W' has the extreme value distribution function exp(-x'A)
e
and G(an) =n ",

We now show that for any U the hypotheses of Corgllartes 1-3
can be satisfied. Let A be a positive integer valued random var-
jable, define I = [V(A)) and let b be the probability generating
function of I. Since

V(R) = 1 5 1T s V(A) (9)

and log U is SV at infinity, it follows that condition (2) is satis-




10.

fied iff E log+A <=, In [3,53.1] several examples were given where
E log*A = w, and for each of these T(x) = P(A>x) is SY at infinity.
We now suppose this to be always the case. It follows then, from
Lemma 1 and (9), that P(I >x) ~ T(U(x)) (x»=) and hence an Abelian
theorem for power series yields
(1-b(s))/(1-s) = § sIP(I>j) ~ (1-5)71T(U(1-s)) (s+1).
Letting s = exp(-1/V(e®)) and invoking Lemma 1 once again, we obtain
G(x) ~ T(e¥). (10)
Let loglx = Jog x and logkx = log(logk_lx) {k=2,3,...) for
all sufficiently large x. In [3] an example was given for which

b L
T(x) ~ cl 1

k

logkX]- (X*”)

1
where r > 2 and c¢ 1is a certain constant. Using (10) it is ob-
vicus that ]3 G(x)dx = « and that xG(x) - 0 (x»«) and hence this
example satisfies the conditions of Corollary 1.

Discrete distributions were also censtructed in [3] for which

T(x) ~ a/log x (0<a<=) ;

T(x) ~ c(log x)~(&-1) [Bce eny 1t <2)s
and

T(x) »~ (c/b)(logrx)'b (0 chb,ctm, ¥ 3 2).

Using (10) we see that these examples satisfy the hypotheses of
Corollaries 2 and 3.
Finally. we show that the ncatest version of Theorem 2 that

could be hoped for is in fact impossible.

heorem 3. There is no sequence of constants (cn) such that c;lU(xn)

has a limit in distribution which is neither defective nor degenerate

at zero.




11.

Plx, < c;lu(xn)s X5

m

Proof. For any 0 < x; < x, <=, let p (x;,x,)
Then, since A(e "u(-))/a(U(+)) s continuous and strictly increas-
ing, it follows also that

P (xys%,) = PLr (x) < Ale™u(x ))7a(U(X))) < r (x,)1

vwhere

0 < rn(x) A(e'ncnx)/A(cnx) <z %,

If (cn) is such that c;IU(xn) is to converge in distributicn, we
nust have cne'" + ® because of Theorem 1. Hence, since A {s SV,
we see that rn(xz) = rn(xl)[1+o(1)] as n»=, Choose any subsequence

(nk) such that e (xl) + r for some re[0,1}. Then, for any ¢ > 0,
k

the intervals r. (. ).r. €x.) belong to (r-ec,r+e) for all «k
Ny 1 Ny 2
sufficiently large. It follows from Theorem 2 that Pn (xl,xz) + 0,
k

and hence that, if c;IU(Xn) converges in distribution, its limit
puts no mass on (0, ).

It is interesting to note the contrast between the cases
p({x) > 0 and p(x) = 0. 1In the former, the asymptotic behavior is
dominated by the underlying Galton-Watson process, and the effect of
immigration, apart from preventing extinction, is seen only in the

distribution of the limit of u(xn)e‘"

: eventually, the contribution

of the immigration process becomes negligible. However, when p(x) =0,
the immigration distribution has such a broad tail that U(Xn)e'“ is
pushed off to infinity a.s. by the infinite sequence of occasional,

but very large, inflows of immigrants. The character of Theorem 2 and
its Corollaries, giving 1imits in distribution but not with probabi-

lity one, reflects the nature of the immigration process rather than

that of the Galton-Watson process. 1In particular, unlike the case
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12.

when p(x) > 0, the limiting distribution appearing in Theorem 2 is
the same, whether or not the Galton-Watson process is regular or

irregular,
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